Get National Current Employment Statistics (CES) Data from BLS
get_national_ces.RdThis function downloads and processes national Current Employment Statistics (CES) data from the Bureau of Labor Statistics (BLS). It retrieves multiple related datasets and joins them together to create a comprehensive employment statistics dataset with industry classifications, data types, and time period information.
Usage
get_national_ces(
dataset_filter = "all_data",
monthly_only = TRUE,
simplify_table = TRUE,
suppress_warnings = TRUE,
return_diagnostics = FALSE
)Arguments
- dataset_filter
Character string specifying which dataset to download. Options include:
"all_data" (default) - Complete dataset with all series
"current_seasonally_adjusted" - Only seasonally adjusted all-employee series
"real_earnings_all_employees" - Real earnings data for all employees
"real_earnings_production" - Real earnings data for production employees
- monthly_only
Logical. If TRUE (default), excludes annual averages (period "M13") and returns only monthly data. If FALSE, includes all periods including annual averages.
- simplify_table
Logical. If TRUE (default), removes several metadata columns (series_title, begin_year, begin_period, end_year, end_period, naics_code, publishing_status, display_level, selectable, sort_sequence) and adds a formatted date column. If FALSE, returns the full dataset with all available columns.
- suppress_warnings
Logical. If TRUE (default), suppresses download warnings and diagnostics. If FALSE, displays warning output and diagnostic information.
- return_diagnostics
Logical. If TRUE, returns a bls_data_collection object with full diagnostics. If FALSE (default), returns just the data table.
Value
By default, returns a data.table with CES data. If return_diagnostics = TRUE, returns a bls_data_collection object containing data and comprehensive diagnostics.
Details
The function can download one of four specialized national CES datasets based on the dataset_filter parameter:
all_data: Complete dataset (ce.data.0.AllCESSeries) - contains entire history of all series currently published by the CES program
current_seasonally_adjusted: (ce.data.01a.CurrentSeasAE) - contains every seasonally adjusted all employee series and complete history
real_earnings_all_employees: (ce.data.02b.AllRealEarningsAE) - contains real earnings data (1982-84 dollars) for all employees
real_earnings_production: (ce.data.03c.AllRealEarningsPE) - contains real earnings data (1982-84 dollars) for production/nonsupervisory employees
Additional metadata files are always downloaded and joined:
ce.series - Series metadata
ce.industry - Industry classifications
ce.datatype - Data type definitions
ce.period - Time period definitions
ce.supersector - Supersector classifications
These datasets are joined together to provide context and labels for the employment statistics. The function uses the enhanced `download_bls_files()` helper function for robust downloads with diagnostic reporting.
Performance Note: Using specialized datasets (other than "all_data") can significantly reduce download time and file size while still providing comprehensive employment statistics.
Note
This function requires the following packages: dplyr, data.table, httr, and lubridate (for date formatting when simplify_table=TRUE). The `fread_bls()` and `create_bls_object()` helper functions must be available in your environment.
See also
Please visit the Bureau of Labor Statistics at https://www.bls.gov/ces/ for more information about CES data
Examples
# \donttest{
# Get complete monthly CES data with simplified table structure (default)
ces_monthly <- get_national_ces()
#> Downloading national CES datasets (Complete national CES dataset)...
#> Joining CES datasets...
#> National CES data download complete!
#> Dataset: Complete national CES dataset
#> Final dataset dimensions: 7837406 x 14
# Get only seasonally adjusted data (faster download)
ces_seasonal <- get_national_ces(dataset_filter = "current_seasonally_adjusted")
#> Downloading national CES datasets (Seasonally adjusted all-employee series)...
#> Joining CES datasets...
#> National CES data download complete!
#> Dataset: Seasonally adjusted all-employee series
#> Final dataset dimensions: 393937 x 14
# Get real earnings data for all employees
ces_real_earnings <- get_national_ces(dataset_filter = "real_earnings_all_employees")
#> Downloading national CES datasets (Real earnings for all employees)...
#> Joining CES datasets...
#> National CES data download complete!
#> Dataset: Real earnings for all employees
#> Final dataset dimensions: 518256 x 14
# Get all data including annual averages with full metadata
ces_full <- get_national_ces(dataset_filter = "all_data",
monthly_only = FALSE, simplify_table = FALSE)
#> Downloading national CES datasets (Complete national CES dataset)...
#> Joining CES datasets...
#> National CES data download complete!
#> Dataset: Complete national CES dataset
#> Final dataset dimensions: 8150247 x 23
# Get data with warnings and diagnostic information displayed
ces_with_warnings <- get_national_ces(suppress_warnings = FALSE)
#> Downloading national CES datasets (Complete national CES dataset)...
#> Downloadingdata...
#> Downloadingseries...
#> Downloadingindustry...
#> Downloadingperiod...
#> Downloadingdatatype...
#> Downloadingsupersector...
#> Joining CES datasets...
#> No warnings forNational CES: Complete national CES datasetdata download
#> National CES data download complete!
#> Dataset: Complete national CES dataset
#> Final dataset dimensions: 7837406 x 14
# Get full diagnostic object if needed
data_with_diagnostics <- get_national_ces(return_diagnostics = TRUE)
#> Downloading national CES datasets (Complete national CES dataset)...
#> Joining CES datasets...
#> National CES data download complete!
#> Dataset: Complete national CES dataset
#> Final dataset dimensions: 7837406 x 14
print_bls_warnings(data_with_diagnostics)
#> No warnings forNational CES: Complete national CES datasetdata download
# }